Downregulation of Bcl-2 proteins in type I spinal muscular atrophy motor neurons during fetal development.
نویسندگان
چکیده
Spinal muscular atrophy (SMA) is an autosomal recessive disorder caused by mutations in the survival motor neuron gene. The degeneration and loss of the anterior horn cells constitute the major neuropathological finding in SMA, although the mechanism and timing of this abnormal motor neuron death remain unknown. It has recently been reported that the fetal SMA spinal cord shows a significant increase in cells with DNA fragmentation, suggesting that the programmed cell death is aberrantly increased in type I SMA during development. We have analyzed 2 antiapoptotic proteins, Bcl-2 and Bcl-X, by Western blot and immunohistochemistry screening for differential expression in control and SMA fetal spinal cords. Expression of these proteins was found in various neuronal populations and structures of the developing spinal cord. At 15 weeks, motor neurons of SMA fetuses showed a marked decrease in the levels of Bcl-2 and a delay in the expression of Bcl-X in comparison with controls. The difference in the pattern and degree of expression is consistent with a role for both proteins in the aberrant programmed cell death observed in type I SMA.
منابع مشابه
The developmental pattern of myotubes in spinal muscular atrophy indicates prenatal delay of muscle maturation.
The loss and degeneration of spinal cord motor neurons result in muscle denervation in spinal muscular atrophy (SMA), but whether there are primary pathogenetic abnormalities of muscle in SMA is not known. We previously detected increased DNA fragmentation and downregulation of Bcl-2 and Bcl-X(L) expression but no morphological changes in spinal motor neurons of SMA fetuses. Here, we performed ...
متن کاملDrawing Word co-occurrence map of Spinal Muscular Atrophy disease
Introduction: The purpose of this article is to evaluate the status of articles in the field of Spinal Muscular Atrophy According to the Scientometrics indices Word co-occurrence map of this field . Methods: The present study is an applied one with a quantitative approach and a descriptive approach. It has been done using scientometrics and the co-occurrence words analysis technique. Document...
متن کاملSMN1 and NAIP genes deletions in different types of spinal muscular atrophy in Khuzestan province, Iran
Background: Spinal muscular atrophy (SMA) is the second most common lethal autosomal recessive disease. It is a neuromuscular disorder caused by degenerative of lower motor neurons and occasionally bulbar neurons leading to progressive limb paralysis and muscular atrophy. The SMN1 gene is recognized as a SMA causing gene while NAIP has been characterized as a modifying factor for the clinical ...
متن کاملReversible molecular pathology of skeletal muscle in spinal muscular atrophy.
Low levels of full-length survival motor neuron (SMN) protein cause the motor neuron disease, spinal muscular atrophy (SMA). Although motor neurons undoubtedly contribute directly to SMA pathogenesis, the role of muscle is less clear. We demonstrate significant disruption to the molecular composition of skeletal muscle in pre-symptomatic severe SMA mice, in the absence of any detectable degener...
متن کاملSpinal Muscular Atrophy Patient iPSC-Derived Motor Neurons Have Reduced Expression of Proteins Important in Neuronal Development
Spinal muscular atrophy (SMA) is an inherited neuromuscular disease primarily characterized by degeneration of spinal motor neurons, and caused by reduced levels of the SMN protein. Previous studies to understand the proteomic consequences of reduced SMN have mostly utilized patient fibroblasts and animal models. We have derived human motor neurons from type I SMA and healthy controls by creati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neuropathology and experimental neurology
دوره 62 4 شماره
صفحات -
تاریخ انتشار 2003